Monday, May 6, 2019

My Coincidental Journey to Relevance

1 pm Paris time today saw the official release of the long-awaited Global Assessment by the Intergovernmental Platform for Biodiversity and Ecosystem Services (IPBES). The product of intensive work by hundreds of people from more than 50 countries over more than three years, the document summarizes the state of biodiversity on Earth and discuss what we can do to improve it that state in the future. The assessment is hundreds of pages (with many many more pages of appendices) and the full document is therefore likely be read by only a small subset of people interested in the topic. For massive documents like this, what is much more likely to be read by many more people is the Summary for Policy Makers (SPM), in this case a 39 page document by itself. Even this SPM is much too long to be read by Important People (Presidents, Prime Ministers, Environmental Ministers) and – of course – by reporters. Hence, everything in the SPM is also distilled down to eight “Key Messages” spanning two pages at the very start of the SPM. These key messages are sure to be read by nearly everyone.

I here wish to draw your attention to Key Message #8, which reads in its entirety:

Human-induced changes are creating conditions for fast biological evolution - so rapid that its effects can be seen in only a few years or even more quickly. The consequences can be positive or negative for biodiversity and ecosystems, but can create uncertainty about the sustainability of species, ecosystem functions and the delivery of nature’s contributions to people. Understanding and monitoring these biological evolutionary changes are as important for informed policy decisions as in cases of ecological change. Sustainable management strategies then can be designed to influence evolutionary trajectories so as to protect vulnerable species and reduce the impact of unwanted species (such as weeds, pests or pathogens). The widespread declines in geographic distribution and population sizes of many species make clear that, although evolutionary adaptation to human-caused drivers can be rapid, it has often not been sufficient to mitigate them fully.

I would like to pause at this point to reflect on an astounding fact: rapid evolution is one of the eight Key Messages of the IPBES Global Assessment. This fact isn’t astounding because rapid evolution doesn’t belong as a key message; but rather because, only 20 years ago, very few people –few scientists even – would have acknowledge the practical relevance of rapid evolution.

It is with some pride that I can report that, in fact, I wrote much of Key Message #8 – with modifications resulting from many reviewers and also with final tweaks during the Plenary Discussion in Paris. I don’t profess to be responsible for, or to favor, each and every word and phrase in the key message; but I do claim to have a key role in this statement making it into the Key Messages, as well as the background material provided later in the SPM, and – of course – the numerous resonances of this “theme” across the rest of the Global Assessment.
I seem to have been relevant. How the Hell did that happen?


Many prospective graduate students start discussions with me by expressing their desire to be relevant – usually to conservation. As a memorable example, one student starting our conversation by saying “I am interested in evolutionary biology or conservation biology.” My response, of course, was “Well, in my lab, we do evolutionary biology and not conservation biology.” To such students wishing to be relevant in conservation biology, my suggestion has always been to NOT do Conservation Biology (note the capitals this second time). I then go on to argue that Conservation Biology is typically imagined to be helping species x or location y or – most commonly –helping species x in location y. Such work is important I acknowledge but we don’t often do it in my lab. The reason is that work to aid species x in location y often has no influence on anything other than species x in location y – and, often, no influence even on species x in location y. I go on to argue that simple basic science designed to understand “how the world works” is by far the best way to make an impact and be “relevant” on the largest possible scale – that is, far beyond only species x in location y. To make this case to students, I go on to give examples. One is the important work done on the effects of inbreeding on fitness, which started with general evolutionary theory and testing on organisms that were not species x in location y. Yet that general work went on to heavily influence policy for many species in many locations.
I then try another example from my personal experience. I try to argue that much of my research is based entirely on a fundamental interest in understanding of how rapid evolution shaped the world – yet it turned out that the insights gained from this research have, in fact, become very broadly relevant. That is, purely basic science at the time then later became applied in ways that influenced policy and, in fact, many species x in many locations y. As of today, I can point specifically to Key Message #8 from the Global Assessment as a concrete example of the contribution of pure basic evolutionary biology to global policy relevance.

This blog post might seem to smack, at least to some, of arrogance – that I am somehow touting my own awesomeness and importance in science and beyond. The key point, however, is not that I am somehow more intelligent or hard working or dedicated or whatever than are other researchers. Rather, the key point will be that focused interested on a basic research question has led to publications in academic journals that have precipitaed a few chance events that eventually snowballed into Key Message #8 in the Global Assessment. I tried to keep my description of this series of events short but had trouble doing so. I did consider what I might delete to make it shorter but then realized that, in fact, each step in this long chain of coincidental (or not) events was necessary to Key Message #8, or at least my contribution to it.


Part 1. Contemporary evolution …

In 1992-1993, Mike Kinnison and I both started studying rapid evolution in salmon at the University of Washington: Mike worked on New Zealand chinook salmon and I worked on Lake Washington sockeye salmon. Our choice of the overall topic (rapid evolution) and our specific study systems had nothing to do with our own insights or ideas – they were instead the suggestion of our MSc (and later PhD) supervisor Tom Quinn. At the time, we were both focus on salmon, not evolution.

Tom Quinn in 1995.
In 1995, my mother bought me a book for Christmas by Jonathan Weiner called The Beak of the Finch. This book about Darwin’s finches kindled my interest in evolution per se, as opposed to salmon evolution.

In 1998, Mike and I read a “News and Comment” article in Trends in Ecology and Evolution (TREE), written by Erik Svensson, about two 1997 studies. One study was by Jonathan Losos in Nature and the other was by David Reznick in Science, both reporting rapid evolution – the first in Anolis lizards introduced to small islands and the second in Trinidadian guppies introduced to predator-free environments. The key innovation of these new papers was that they calculated evolutionary rates for their studies and compared those rates to evolutionary rates estimated from the fossil record. This comparison revealed that evolution in lizards and guppies was several orders of magnitude faster (RAPID!) than rates of change observed in the fossil record.

Later in 1998, Mike and I wrote a letter to TREE, titled “Taking Time with Microevolution”, in which we criticized the current methods for estimating evolutionary rates. Exploring this question while writing the letter made us realize that much more needed to be said than we could effectively summarize in that short letter.

Also that year, I was invited by Eddie Beall to participate in salmon research at an INRA station (Saint-Pée-sur-Nivelle) in France. Without my friends and girlfriend – and before the internet was really that useful – and staying in a dorm at a small research station in a very small town in the Basque countryside, I had plenty of time. My goal to write a longer paper about evolutionary rates had been nagging at me, and one day – walking from my dorm to the small town – I simply said to myself: “Damnit, time to start writing.” A week later I had a first draft sent to Mike.

In early 1999, Mike and I submitted the paper to Evolution – a real stretch for two salmon-focused students who had never published any of our previous work in an evolutionary journal. Remarkably, Evolution published it as a “Perspective” with the start of the title being “The Pace of Modern Life.”

The paper quickly received considerable interest from the evolutionary community, as it was the first review of rapid evolution (which we argued was better called “contemporary evolution”). This interest included the editors of Genetica contacting me to ask if Mike and I wanted to edit a special issue on rapid evolution. This invitation came before the days of predatory publishers who are constantly asking you to edit special issues, and so we were shocked and agreed instantly. We then contacted all of the leaders in the field and, remarkably, nearly all of them agreed to contribute papers.

I edited this special issue during my postdoc at UBC, where “ecological speciation” was all the rage. All of the discussion I was hearing on this topic inspired me to re-examine my Lake Washington salmon studies for evidence of whether rapid evolution was leading to reduced gene flow between populations: i.e., the rapid evolution of reproductive isolation. Recruiting my friend John Wenburg and his supervisor Paul Bentzen, (then both at the University of Washington) to conduct genetic analyses, I submitted the findings to Science and – remarkably – the paper was accepted. (I have since had dozens of submissions rejected from Science & Nature – more about that here.)

Based on the above work on rapid evolution – probably especially the Science paper – I received the American Society of Naturalists Young Investigator Prize in 2001. Winners of this prize all give a talk in a symposium at the Evolution meeting. I did so and was afterward approached by the editor of TREE (Catriona MacCallum) who asked if I wanted to write a paper for them. I agreed and she asked me to send her some possible topics that I thought might be appropriate.

Part 2. … might be relevant for conservation biology …

One of the other people studying rapid evolution in the late 1990s was Craig Stockwell – and his work focused on endangered desert fishes. I had discussed this work with him several times and, on a whim, suggested to TREE that we could write about the relevance of contemporary evolution for conservation biology. This was the least favorite of my suggestions at the time (you know nothing Andrew Hendry!) and yet it was the one that TREE asked for.

Not knowing much about conservation biology, Mike and I invited Craig to lead the paper for TREE – and we are very thankful to have done so as Craig was able help position our shared basic knowledge of contemporary evolution into a solid conservation framework. The result, published in 2003, was the first review paper talking about the importance of contemporary evolution for conservation biology. Just last week it passed 1000 citations.

In 2004, I was invited to interview for a job at Yale University – I was then an Assistant Professor at McGill University where I had started in 2002. One person I met on the interview was Michael Donoghue. Surprisingly, he didn’t talk about my research specifically but rather invited me to bring my contemporary evolution perspective to a group called bioGENESIS, which he outlined was a “core project” of a biodiversity-focused NGO called DIVERSITAS. At that point, I had never heard of DIVERSITAS – and had no knowledge about, or interest in, NGOs in general. I just wanted to study rapid evolution as a basic question. However, I agreed to join bioGENESIS, perhaps because I thought it might help me get the job (it didn’t) and perhaps because I was flattered to be asked and have a hard time saying no to direct requests for such help. Afterall, how much time could it take?

Dinner after my first bioGENESIS meeting.

The first bioGENESIS meeting I can remember attending was held in Paris in 2007. Sitting around the table with a bunch of evolution-focused Professors, I listened to endless discussions the importance of injecting evolutionary thinking into conservation policy at the national and international levels. Countless NGO acronyms were used and I really had no idea what was going on; yet I could see that, perhaps, if I could eventually figure out what was going on, I might be able to contribute something new: everyone else around the table focused on past evolution, not contemporary evolution. I do also remember spending an inordinate amount of time debating the specific logo that would be used for bioGENESIS – and it is a nice logo!

I attended many subsequent bioGENESIS meetings – Brazil (twice), New York, Montreal, Paris again, and many others. My role in these meetings was generally to help inject contemporary evolution into various discussions and documents, such as the bioGENESIS Science Plan and a paper for Evolution titled “Evolutionary biology in biodiversity science, conservation, and policy: a call to action.”

In 2006, I was invited by Louis Bernatchez and Michelle Tseng to join the inaugural editorial board of the new journal Evolutionary Applications. I remain an Associate Editor at the journal, which has been extremely successful. I have also published a number of my own papers there

I eventually became Chair of bioGENESIS and started to attend the broader DIVERSITAS meetings, where I rubbed elbows with many movers-and-shakers in the international science-policy interface, such as DIVERSITAS Chairs Georgina Mace of University College London and Hal Mooney of Stanford University. I was also through these contacts invited to give talks at various general events, such as Darwin’s 200th birthday celebration at the National Academy of Science in Washington, DC – events at which many of these movers-and-shakers were again present.

Many global change programs, including DIVERSITAS, had long been funded by governments to provide advice and guidance to the Convention on Biological Diversity (CBD) and other governmental and intergovernmental programs. Around 2012, however, governments – especially the US – decided this piece-meal was too chaotic, expensive, and time consuming, and so they asked that all of these programs unite under a common banner, which came to be called FutureEarth. I continued to work with bioGENESIS under the new aegis of FutureEarth.

Part 3 … and IPBES.

For several years in bioGENESIS, I had been hearing about IPBES, the new IPCC-like organization that would be focused on biodiversity and ecosystem services. Some members of bioGENESIS were involved in IPBES as advisors or “observers” but I had not been.

Then, in 2016, I was contacted by Sandra Diaz with a request to participate in the upcoming Global Assessment to be conducted by IPBES. Although Sandra had herself done a lot of work on contemporary evolution, she was very busy as one of co-Chairs of the assessment and wished to invite the help of another expert on the topic. I presume my name come up through a combination of my previous papers and probably also my visibility to the movers-and-shakers I had encountered during interactions at DIVERSITAS, FutureEarth, and so on. Indeed, Hal Mooney and Georgina Mace were both involved in the Global Assessment as advisors/reviewers, and Anne Larigauderie – whom I knew as Executive Director of DIVERSITAS – was now Executive Secretary of IPBES.

I missed the first authors’ meeting for the IPBES Global Assessment owing to a previously-planned family trip and also the second meeting owing to a broken leg. However, I was able to attend the third (Cape Town) and the fourth (Frankfurt) authors’ meetings at which I worked, especially with Andy Purvis, on Chapter 2 – Nature, again always charged with bringing a contemporary evolution perspective to the document. To aid this effort, I arranged new meta-analyses of data led by my students Sarah Sanderson and David Hunt, which will be coming soon to a journal near you.

I also agreed, while at the Cape Town meeting, to write the appendix and other information for NCP 18 (Maintenance of Options) in the chapter on Nature’s Contributions to People (NCP). The core of that appendix was then written at a meeting in Montreal with the help of current members of bioGENESIS, with additional help from Rees Kassen from the University of Ottawa and Vicki Friesen from Queen’s University. Vicki’s postdoc Deborah Leigh also became involved and conducted a meta-analysis on rates of change in genetic diversity that will be published soon in Molecular Ecology: “Six percent loss of genetic variation in wild populations since the industrial revolution.”

Toward the end of the Global Assessment process, Sandra Diaz asked for my help in making her case for contemporary evolution to be a Key Message in the Summary for Policy Makers (SPM). I helped Sandra write a draft that went off for review and was returned with the argument that, although interesting, rapid evolution wasn’t “policy relevant” and therefore didn’t belong in the Summary for POLICY Makers.

The way I sought to deal with this was to entirely re-write the Key Message and Background Material for the SPM specifically around the policy relevance of contemporary evolution. That is, knowledge of evolutionary principles can be (and is) used to directly inform specific management actions that then have material effects on biodiversity and humans.

This change in emphasis seemed to make the point effectively and then the discussion became more about the details – the last of which I worked on while defending my house from the great Ottawa/Montreal flood of 2019. However, it still required lots of back and forth between myself and Sandra and Andy and others to make sure that the Key Message was clear – and would be approved by governments as a Key Message.


So ends my as-short-as-possible summary of my 27 year accidental – or coincidental – road to relevance. It started with a suggestion from my supervisor Tom Quinn and then passed through arguments with my office mate Mike Kinnison to a book from my Mom to a News & Comment by Erik Svensson to side trip to uneventful France, to lucky submissions to Evolution and Science to an award from ASN to an invitation from an editor who saw my talk to a failed job interview and then to series of snowballing contacts with movers-and-shakers in the world of international science policy. Throughout this process, I have maintained my conviction that basic science is the way to have the biggest impact and the greatest relevance. Problem-focused applied science is fine but – if you wish to be relevant – basic science is also a viable road, as I hope my own journey illustrates.

Mike and I trying out some new facial hair, not that long after we both became professors.
We had both interviewed for the same job, which Mike got!

I don’t wish to – in any way – criticize people who do applied science or conservation biology. However, funding agencies, the media, and now many students are so focused “making a difference” that they steer away from basic curiosity-driven research. I am here to tell you that these two things – curiosity-driven research and applied relevance – are not mutually exclusive. Sometimes doing the best possible basic research can be the best possible route to “making a difference.” We need more funding for basic research. We need more people doing basic research. Hopefully my experience will remind a few people of that fact.

Does my experience with bioGENESIS and IPBES motivate me to now parlay my relevance into more focused emphasis on applied issue. No. Not at all. I remain passionate about basic science – now, most directly, the influence on contemporary evolution on ecological process. I even wrote an esoteric very academic book about it, called Eco-Evolutionary Dynamics. I also have started several massive experimental studies on eco-evolutionary dynamics in nature that have no immediate practical relevance whatsoever. They won’t save species x in location y – for any specific species in any specific location for that matter. Rather, they will continue to bolster our general understanding of how evolution shapes the world around us. If policy makers find that insight useful, I am happy to provide my input and advice should I be requested to do so.

No comments:

Post a Comment

A 25-year quest for the Holy Grail of evolutionary biology

When I started my postdoc in 1998, I think it is safe to say that the Holy Grail (or maybe Rosetta Stone) for many evolutionary biologists w...